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ABSTRACT

This Report presents an application of Cumbers extreme-value

theory to the estimation of low error probabilities in certain types of

communications systems such as the Ranger Block III Command

Detector. The systems considered all involve threshold detectors in

a binary system. By taking the maxima of a large number of successive

independent samples, and then by taking a large number of these

maxima themselves, the two parameters of the Gumbel distribution

are estimated using large-sample theory. The variance of the error-

probability estimate is found, as well as a confidence interval. The

savings obtained by using the Gumbel method, as opposed to the

simple monitoring Of errors, is shown to be large. Finally, by applying

a goodness-of-fit test to the voltage data of an actual Ranger Block III

Command Detector, it is shown that the Gumbel distribution does

indeed hold.

I. INTRODUCTION

The statistical theory of extreme values (Ref. 1 and 2)

applies to the problem of estimating low error proba-

bility whenever errors are caused by large fluctuations

of a random quantity such as a voltage. The basic idea
is to nse a short stretch of fluctuation data to estimate

how long it would take for a random fluctuation to be

so large as to cause an error. The technique may be

used whenever one must identify very low error proba-

bilities, or whenever the time or expense of estimating

these probabilities by counting the occurrences of errors

is prohibitive. To date, the applications of this technique
have been in fields such as civil engineering and actu-

arial science, rather than in communication theory. How-

ever, a system is being designed for using this method

in testing Ranger Block III Command Detectors, so that

faulty detectors will not be put aboard the spacecraft;

those detectors that give too high an error probability

will be rejected.

Gumbel's extreme-value distribution functions are of

the form exp-(exp-(a(x -- u))), where a and u are posi-
tive parameters. This distribution is the asymptotic
distribution, as n-->_, of the extreme positive value

among n independent random variables x_ which are

chosen from a distribution of exponential type on the

right, if a and u are correctly chosen. "Exponential type
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on the right" means that the distribution F(x) has, for

x greater than some x0, a density function f(x) which is

differentiable and not zero, such that

lim f(x) _ limf'(x)
_-_oo1--e(x) _-_oof(x) "

"Asymptotic distribution as n---_oo" means the following:

a sequence of distribution functions Gn(w) is said to con-

verge to the asymptotic distribution G(w) if lim Gn(w)=

G(w) for all w.

The definition of asymptotic distribution applies to

the extreme-value situation as follows. For each n, the

distribution of the maximum of n independent samples

from F(x) has associated with it positive parameters an

and un, whose definition need not concern us here. Let

z = max xi (1 < i < n) and consider the random vari-

able w = an (x-un). Then the asymptotic distribution

holds in the following sense. Let Gn denote the distribu-

tion of w. The statement is that the distribution Gn(w)

converges to exp- (exp-(w)).

The parameters an and un do not converge to a and u.

However, for given fixed n, the parameters an and un

(written a and u from now on) are unknown in general,

and so must be estimated. Of course, a and u are

determined from F and n, but the point is that F is not

known; in fact, ff F were known, the extreme-value

theory would not be needed. One is willing to assume,

however, that the unknown F is of exponential type,

since this assumption is satisfied for distributions having

right-hand tails qualitatively like a normal or negative

exponential distribution.

Now consider a "threshold detection" scheme in which

a bit is called a "1" if the output of the detector rises

above a certain level, and a "0" if it is below that level.

We assume that the bit rate is slow enough so that

deviations in different bits are independent random vari-

ables, as is often true in a well-designed system, and is

true in the Ranger Block III Command Detector. We

examine a run of M = Mn successive bits with, for

example, a 'T' as the transmitted symbol. We look at

the maximum of the (negative of) this deviation in each

block of n bits. If n is large enough, the deviations would

have the extreme-value distribution with unknown pa-
rameters a and u. Then we estimate a and u from the

N samples of the extreme-value distribution.

Using a and u, we can then readily estimate the error

probability. First, we estimate the probability that the

maximum out of n exceeds the threshold. Simple algebra

transforms this probability into the probability that a

given single observation exceeds the threshold; for small

error probabilities, we just divide by n. We arrive at an

estimate of the probability of the error "T'--_"O'.

A similar estimate is used to find the error probability

of the "0"-->"1" transition. However, in the Ranger Block

III Detector, the threshold is set asymmetrically, so that
the "0"-->"1"' transition can be assumed not to oeettr.

Thus, in such cases, assuming that a "0" and a "1" are

equally likely to be transmitted, the error probability is

ultimately estimated as one-half the estimate of the

probability of the "1"--_"0" transition.

In a typical case, we used M = 3000, n = 100, N = 30.

That is, extremes were taken from successive 100 sam-

ples, giving 30 independent samples from an extreme-

value distribution. As we shall see, to obtain with equal

confidence an error-probability estimate using the method

of counting error occurrences, the number of samples

required would be ten or more times as large as the

number we have used. It is this difficulty of obtaining

sufficient data by classical error-estimation procedures,

coupled with the failure of the normal distribution to

adequately explain the distribution of voltage at an

individual sample, that accounts for the usefulness of

extreme-value theory in its application to the Ranger
Block III Command Detector.

Previous uses of extreme-value theory have not been

to estimate error probability. Rather, the method has

been used to determine, for example, how large a dam

to build to cope with maximum floods. In previous ap-

plications, the "threshold" was to be set after, rather

than before, determining the maximum "voltage." In such

previous applications, "threshold" would correspond to

the size of dam to be built, and "voltage" would corre-

spond to the height of water in the flood. In the present

application, we are given a "dam" already built, and we

must examine a short record of "floods" before paying

for the dam. Thus, the model is somewhat different.

2
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II. MAXIMUM-LIKELIHOOD ESTIMATORS

The best kind of estimator to use for general purposes

is a maximum-likelihood estimator. These estimators are

asymptotically unbiased and yield asymptotically minimum

mean-square estimation error. Furthermore, maximum-

likelihood estimators have an asymptotic joint normal

distribution, whose means are the true means and whose

covariance matrix is readily calculable. Thus, confidence

intervals can be constructed for a single parameter with-

out knowledge of the other parameters. This ability to

obtain confidence intervals for a single parameter is a

property of jointly normal estimators not shared by other

kinds of estimators in general (Ref. 3, Chapter 10). The

sample size N that one has to deal with in some of the

applications can be as small as 20 or 30, so that the appli-

cability of the asymptotic theory of maximum-likelihood

estimators can be questioned. But the decided advantages

of using the asymptotic theory are so great that we adopt

the principle of maximum-likelihood and assume the

asymptotic joint normal distribution.

To obtain the maximum-likelihood estimators, we first

change parameters in the extreme-value distribution

F(x) = exp - (exp - (a (x-u))) to a set of parameters more

suited to our purposes. Namely, we are interested not so

much in a or u as in /3, the probability that a random

variable distributed according to F(x) exceeds the

known threshold x0. This fl is thus defined as F(xo)

----exp -- (exp -- (a (xo--u))) = ft. We now write F in terms
of a and fl, rather than in terms of a and u.

Since /3 = exp - (exp -- (a(x - u))), log /3 =

- exp --(a(x,,-u)). Let us define v = a(Xo-U) and

estimate ,,; fl = exp - (exp - (v)): Then

e(x) = exp -(exp-(a(x - Xo) + v)) (1)

is a Gumbel distribution, with unknown parameters a

and v. We now obtain the maximum-likelihood estimators

of a and v.

If the N samples from F are Xl, x2, "" ", xN, then the likeli-

hood function for the given sample of N is

L(xa, "", xx; v,a) = a _ exp -- (a E (xi -- xo) + Nv)

X exp -- (E exp -- (a(x, -- Xo) + v)), (2)

since the density function f(x) = dF(x)/dx is given by

t(x) = exp - Xo)+ v)exp-- (exp-- + v)).

(3)

To find the a and v maximizing equation (Eq. 2), we

differentiate the logarithm of Eq. 2:

logL = Nloga - N a (Y-- Xo) -- Nv

-- E exp --(a(xz -- xo) + v), (4)

where k- = 1 _ x_.

Then

_log L N
-- N (_ -- Xo)

+ E - Xo)exp - Xo)+

(5)
_log L

-- N + E exp -(a(xi -- Xo) + v)._v

The likelihood equations to be solved for _ and v", the

required maximum likelihood estimators, are obtained by

setting (_log L)/(3ct) = (_log L)/(3v) = 0 in Eq. 5.

The likelihood equations (Eq. 5) do not have a closed-

form solution, so a numerical technique must be used to

find _ and 9. Newton's method is useful, but a good 0 t"

approximation must be obtained before the method will
work.

One way of obtaining first estimates graphically will

be briefly described here; a numerical approach is ex-

pounded in Ref. 2, p. 226. We use extreme-value proba-

bility paper, which is probability paper so constructed
that when an extreme-value distribution function is

plotted it becomes a straight line (Ref. 2, p. 34). Such

paper is very useful in this work, and is available from a

commercial supplier. 1 The vertical scale is linear in x, but

the horizontal scale is proportional to -log(-log F(x)).
We order the x_ to obtain the order statistics x<_),

where x(m_ > xo,_+l), 1 < m ___N. The value of F(x) to

be associated with x(,,) is (N + 1 - m)/(N + 1).

Technical and Engineering Aids to Management, Lowell, Mass.
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We then fit a straight line to the data by any means,

visual or otherwise, to obtain the first approximation to

aAand 5. Thus, the slope of the line is the first approxima-

tion So to _ and the vertical intercept is the first approxi-

mation Go to 6. Then the first approximation vAo to vA is

-exp-(aA0 (Xo -- _to)). Newton's method for solving simul-

taneous transcendental equations is then applied until

sufficiently good approximations to _ and _ are obtained.

Thus, consider the data of Table 1, obtained from a

5-min run of a particular Ranger Block III Command

Detector. Since ten samples that are still independent

can be taken per second, M = 3000. For n, 100 samples

Table 1. The thirty ordered extreme deviations x(,,_)

m x(,,,)

1
2
3
4
5
6
7

8
9

lO
11
12
13
14
15
16
17
18
19
2o
21
22

23
24
25
26
27
28
29
3o

948
881
837
820
793
758
750

732
724
720
697
650
645
642
623
604
591
582
57o

.561
540
52o
5o3
489
477
460
450
442
423

4oo

were used. Thus N = 30. The data is in arbitrary units
in which the threshold Xowas 955, just beyond the highest
x_ observed. The graph of Fig. 1 was obtained, with the

line corresponding to the Gumbel distribution fitted by

eye. Notice how good the fit is; (we shall say more

about this in Part V). The values of _0 and 9o obtained
/N

from the straight line were ao = 8.77 × 10-3, _0 = 3.46.
The likelihood equations appear formidable, but the

visual fit was sufficiently good that the likelihood equa-
tions were solved with a desk calculator, using only two

iterations. The final values obtained were a0 = 8.76 X 10 -3,
A A

vA = 3.52. Then fl = exp-(exp-(v)) = .971, and 1 - /3 =

2.9 )< 10 -2 is the maximum-likelihood estimate for the

probability that the maximum in 30 of the xi exceeds xo.

Now let _ be the maximum-likelihood estimate of the

probability e of making the 'T'--_"O" error when a 'T'
A

is sent. We have (1 -- e) n = _, so e _ (1 -- fl)/n^ =

(2.9 × 10-2)/100 = 2.9 × 10 -4. Letting p be the error

probability for the particular asymmetric detector being

studied, we observe that p = e/2; so if _ is the maximum-

likelihood estimator of p, we have _ = 2/2. Thus _ =

1.5 X 10 -4 is finally the maximum-likelihood estimate of

the error probability using that particular detector under

those particular environmental conditions.

1000

I

_oo_o :_

800 -- _ _

l 700

600

500 _//

400 ,-- l

130)
300

M.5 -I.0 -0.5 0.0

Y

0,5 1.0 1.5 2.0

-log log (F(x))-I "_l_

215 3.0 3.5

Fig. 1. Table 1 plotted on extreme-value paper
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III. CONFIDENCE INTERVALS

Confidence intervals for _ are obtained by using the

following standard theorem (Ref. 3, p. 236): The

maximum-likelihood estimators _ and _ are, for large N,

approximately bivariately normally distributed, with

means a, v and with covarianee matrix (I/N) V. Here,

v = R-1, R = -_ ((_2/_i_/)log / (x; _, v)); oi =
as if i = 1, _i = _v if i = 2, and E denotes expected

value with respect to the distribution F(x; a, v) whose

density function is f(x; a, v).

From this theorem, we could obtain joint confidence

regions for _ and _, but since we are interested only in 9,

we proceed as follows. Since _ and _ are assumed to be

jointly normal, then ¢ is normal in its own right. And the

expected value of P is still v. The variance of 9 is merely

1/N times the (2, 2) term in V. Thus, the asymptotic

marginal distribution of _ is completely specified, and we

can obtain confidence intervals for v by standard proce-

dures. We must first, therefore, find the covariance matrix V.

Differentiation of Eq. 1 and 3 yields

Oqog I 1
- - (x - Xo)2exp - (_ (_ - _o)+ _),

_(_2 1_2

(x - _o)exp --(. (_ -- _o)+ .), (6)

Oqog I
-- exp --(a (x -- Xo) + v)

_V2

Defining r_ -- -- E _a 2 ] , etc., we have

1
r_ = -at + _((x - Xo)_exp -(_ (_ - _o)+ _)),

r_ = E((x -- Xo) exp --(a (x -- Xo) + v)), (7)

r_ = E(exp --(a (x -- Xo) + v)).

We must now find the expected values required in Eq.

7. We define H(t), the moment generating function of the

standardized extreme value distribution exp(- exp(-y)),
as

H(t) = exp(ty) exp- (y) exp- (exp- (y)) dy. (8)
,J y=-_

Then H(t) = P (1 -- t), where P is the gamma function

(Ref. 2, p. 173). We can use this result by transforming

Eq. 7:

E((x - Xo)_exp-- (_ (x -- Xo)+ _))

f _ !-L_--L/_exp- (2y)
= exp- (exp- (y)) dy,

=_

E((x - Xo)exp-(_ (x - Xo)+ _)) (9)

= exp-(2y) exp- (exp- (y)) dy,

e(exp-(_ (x - xo)+ ,,))

f-= exp-- (2y) exp -- (exp-- (y)) dy.
=-co

The third integral in Eq. 9 is easy to evaluate and

equals 1. For the other two integrals, we define

A1 = fy_o
=--O9

A2 = f_

y exp- (2y) exp- (exp- (y)) dy,

y2 exp-(2y) exp - (exp-(y)) dy.

(10)

Then Eq. 9 becomes

A_ 2vAl y2

E((x -- Xo)2exp-(a (x -- Xo) + v)) -- (i 2 (i 2 "@ --_2 ,

E((x - Xo)exp--(a (x - Xo) + v)) --
AI y

E(exp-(a (x - Xo) + v)) = 1.

(11)

Thus, we are reduced to determining A_ and A> But from

Eq. 8 we have

A, = n'(-1) = -- IV (2);
(12)

A2 = H"(--1) = Iv' (2).

Using Whittaker and Watson (Ref. 4, Chapter XII), we
recall that

Iv (2) = 1 - :,,

Iv, (2) = (iv (9))_+ -g - 1

(13)

=(1 --V) 2+-g- =1,

5
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where _ is Euler's constant •5772 ..... Substituting these

values for A1 and As into Eq. 11 and then into Eq. 7, we

finally find the matrix R:

r,,= (l-r) 2+Y+2v(1-r)+v2 ,

1 (1- +v), (14)

ryv _ 1 •

We are now ready to derive the covariance matrix V,

or rather its (2,2) term. Since V = 11-1, the (2,2) term of

V is given by (1/(r_, rvv -(r,v)) 2) r,,. Remembering to di-
vide by N, we have

6

Var av_--_7 ((1- 7 + v)2 +-_- ) . (15)

Now in Eq. 15, v is an unknown parameter. We could

replace v by its estimator va, since N is large and therefore

vAis likely to be close to v. However, for a more accurate

estimation, we proceed as follows.

A one-sided confidence interval on the error probability

is desired• That is, we wish to say: unless an event with a

certain low probability has occurred, the true error prob-

ability is less than a certain value. This is the criterion

upon which acceptance or rejection of a given detector
under test is to be based. And a one-sided-on-the-left

confidence interval for the probability that x exceeds Xo

corresponds to another confidence interval for v, one-sided

on the right.

If a confidence interval of confidence x(x a number

slightly less than 1) is desired, we demand a v0 such that

er(v > vo)= (16)

in the a posteriori sense• To do this, we seek a vl such that

Pr(vA < vl) = ;_ (17)

where probability is interpreted according to the marginal

distribution of v. Since v has mean v and variance a 2 given

by Eq. 15, we write Eq. 17 as

Since vais normal, (_-v)la has the unit normal distribution.

Now define (Px as the quantile of order x of the unit-

variance normal distribution (that is, with probability x,

a unit normal variate is less than _I,x). We then have, from

Eq. 16,

Yl -- Y

4- -j + (19)rr2/6)

so that one obtains a quadratic equation for v:

Y2( 1 - NTr26(I)_) -- 2V ( vl -]- __NTr26_ (1--_/)) "q_ v2

_ (1-7)' + = 0. (20)
Nrr 2

Only one of the two roots of Eq. 20 is acceptable, since

v_must be greater than v when _x > 0 (the case of interest

corresponds to X > ½). Thus

_ = _+ _

Consequently,

• . A

Consider the region m which v < v + c _/(v+a) 2 + b _

for a,b,c as positive constants and c < 1. One has

(_-v)-_ < c _ ((v+a) _ + 55), (23)

which ultimately reduces to

1 ( ^ cN/(v+a)2+(1-c2)b 2) (24)v > __c2 ac2 + v -

The minus sign must be taken in Eq. 11, since the plus

sign will ultimately make vo greater than va. But vo must

be less than _, for av corresponds to a confidence of .5,

whereas we are interested in larger confidences• In the

problem at hand, c = (_ _x, a = 1 - v, b = _r2/6.

We now have Pr (v>vo) = ;% where vo is given by

1 ( ch/(v+a)_+(1-cZ)b _) (25)vo-- 1--c z ac2 +v-

6
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IV. COMPARISON WITH THE ERROR-COUNTING METHOD

Let us now compare the confidence intervals for e (the

probability that a "T' changes to a "0") obtained using

extreme-value theory, with those obtained using the bi-

nomial distribution. This latter method would ignore the

structure of an error (namely, that an error is caused by

the large deviation of a random quantity), and would

record only the occurrence of errors. Thus, in the data

of Table 1, the threshold x0 was never exceeded, and

so no errors were made. The error-counting method only
uses the data "no errors in 3000 bits" instead of the actual

record of voltage deviations. Let us now determine how

wide the confidence interval for the error probability e

is when using the binomial distribution in this way.

We have 3000 independent samples from a binomial

distribution, with unknown parameter e for the prob-

ability of success. Find a 90% confidence interval for e

of the form (0, el), if no "successes" (errors) are observed.

To rephrase the problem, how large can el be so that the

binomial distribution with parameter el has probability

.1 of having no successes occur in 3000 trials?

Since el is small, we can use the Poisson approxima-

tion to the binomial distribution: the probability of no

successes in n trials when the probability of success is

el is approximated, for large n and small el, by exp(-ne_).

Thus, exp(-3000el) = .1, 3000el = 2.3026, e_ = 7.7X 10-4.

Since e0 was 6 X 10-% the binomial method in this instance

is worse than the extreme-value method (in the sense of

length of confidence interval) by a factor of 1.3, when
no errors are counted.

A more dramatic advantage appears when the true e

is still smaller, say 10 -5. Then the extreme-value method

gives reasonable confidence intervals having some rela-

tion to the true e. But the binomial method keeps giving
the same e_ = 7.7Xlff 4 when no error is observed,

regardless of the true e! Thus the error-count method

loses all power to distinguish between error rates of 10 -_

and 10 -5 with 3000 samples, whereas the extreme-value

theory can easily distinguish between the two error rates

with only 3000 samples.

For instance, to distinguish 10 -' and 10 -5 error rates at

the .1 significance level with the error-count method

would require a much larger number of samples. Spe-

cifically, we require that the e_ for the .1 level, when no

errors are made, be less than 10-L Let M samples be

required. Then exp(--Nel) = .1, Me_ ---- 2.3026; but

e 1 < 10- 4 SO M > 23,026. Thus eight times as many sam-

ples are required by the error-count method as by the

extreme-value method in this instance. The savings are

even more dramatic at lower significance levels (.01 in-

stead of .1), or at lower error rates. The reason for adopt-

ing the extreme-value theory is clear.

V. GOODNESS OF FIT

In adopting extreme-value theory, we must question

two major assumptions. The first assumption is not so

serious--that the value of N, the number of samples of

the extreme-value distribution available for estimating

the error probability e, is large enough to use the asymp-
totic distribution of the maximum-likelihood estimators.

The N we used was only 30, so the question is indeed

relevant. However, this question is attackable analyti-

cally, and is not a fundamental question on the applica-

bility of the extreme-value distribution.

The more serious question is whether extreme-value

theory holds at all. We have the large number (n---100)

of independent samples from which to choose extremes.

The n looks large enough, if the original distribution of

voltage deviations in the detector is not badly behaved.

But in the case of many detectors, the voltage whose

distribution is in question is the output of a highly com-

plicated nonlinear device such as a tuning-fork filter.

The signal into the "front end" of the detector is a certain

audio frequency if the bit is a "1," plus additive white

7
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Gaussian noise. The output of the tuning-fork filter is

detected, sampled, and compared with the threshold x0.

If x0 is exceeded, the bit is called "T'; if x0 is not exeeeded,
the bit is called "0."

Now the behavior of Gaussian processes through non-

linear operations is fairly well known qualitatively, even

if the particular form of the distribution cannot be readily

found; it is reasonable to expect the tails of the distri-

bution to be of the exponential type. Consequently,

extreme-value theory ought to apply.

However, we can test whether extreme-value theory

holds, so as not to rely too heavily on any of the above

arguments--we can apply a goodness-of-fit test to the

data to which extreme-value theory supposedly applies.
Such a test tells us whether it is reasonable to assume that

a given empirical distribution could have arisen as a set

of N independent samples from an assumed distribution.

We shall apply a certain goodness-of-fit test to the data

of Table 1. The null hypothesis is that the true distribution

of voltage fluctuations is a Gumbel distribution with

parameters a and v chosen as a = 8.76X 10-3, v = 3.52, the

maximum-likelihood estimators found in Part II. The pro-

cedure to be described is a good one to use in testing

goodness-of-fit to any Gumbel or other extreme-value
distribution.

Just as in the case of confidence intervals, a one-sided

goodness-of-fit test is desired. Furthermore, the test

should have its high power against those alternatives

that would lead us to think that the error probability is

lower than it really is. Bearing these two requirements

in mind, we have constructed the following goodness-of-

fit test for use in determining whether Gumbel's extreme-

value theory holds in a given situation. This material has

previously been published (Ref. 5); a summary will be

given here.

Recall that a test is called distribution-free if the dis-

tribution of the test statistics being used, under the null

hypothesis that the assumed distribution is the true one,

is independent of the assumed true distribution. The

advantage of distribution-free tests is that only one table

is required, instead of a different table for each null

hypothesis. The test to be obtained is of this distribution-
free kind.

In Ref. 6, a family of distribution-free goodness-of-fit

tests is described. A test is called a one-sided Kolmogorov-
Smirnov test if the test statistic used is of one of the two

forms k/N-sup (±(F(x)--FN(x)); where F is the assumed
X

distribution, supposed continuous everywhere; FN is the

distribution of N samples from the actual distribution;

and q_(F) is a fixed non-negative weight function (selected

according to what the alternative hypothesis to F might

be). These tests are all distribution-free. In Ref. 7, Doob

used the theory of Markov processes to derive the asymp-

totie distribution of the test statistics for large N (this

explains the use of the factor _ above), when "I_ is

identically equal to 1. The answer is surprisingly simple

--the asymptotic distribution of the test statistic is

1 - exp( - 2t-_).

Since Gumbel's theory is concerned with extreme

values, the alternatives to the null hypothesis that one is

afraid of are deviations in the right-hand end of the dis-
tribution. One fears that the values of the maximum of

the random voltage given by the true distribution are

even larger than the Gumbel distribution would indicate,

since then detectors would be accepted as good when

in fact they yield too high an error probability. That is,

the alternatives against which one wishes to have high

power are of the form "the true random variable is

stochastically greater than the sample distribution would
indicate."

This suggests that the test statistic should weight values

of F(x) close to 1 more than it does values close to 0.

However, one is also interested in whether the theory

holds at all, and not only in whether the large values of x

are given correct probabilities. Thus, the test statistic

should also give some weight to small x. These facts

suggest ,I_(F) = F as the test statistic.

Define

P) = V _ sup (F(x)-FN(x))F(x).
X

The "'max" rather than the "min" is chosen, because when

FN is below F by a large amount, then the true values of

x tend to be larger than the null hypothesis would indi-

cate; for if fewer x are below Xo (that is, if FN(xo) < F(xo)),
then x exceeds Xo more than F would indicate. And the

weight function F(x) weights the larger x0 more than it

does the smaller. Consequently, if FN(xo) were less than

F(xo) near the left-hand tail, the statistic P) might not pick

up this deviation, as it need not by the heuristic moti-
vation for the test.

The advantage of using this special Kolmogorov-Smirnov

test with weight function ,I,(F) = F is that the new test

8
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has higher power against alternatives of the form "the

true distribution at a given x is less than the assumed

distribution." That is, the test has higher power against
alternatives of the form "the true random variable is

stochastically greater than the assumed one." We gain

this extra power where we need it by giving up our power

against alternatives of the form "the true random variable

is unequal to the assumed one."

The distribution of this new statistic for N = 30 was

found by a Monte-Carlo method, using a scheme which

gave the correct distribution in the known case of q(F) = 1,

tables of which for various N appear in Ref. 8.

From Fig. 2, which graphs the data of Table 1 and

Fig. I in more usual coordinates, we can readily find the

maximum of x/_O (F(x) - Fao(x)) F(x), since the maxima
can be shown to occur at the jumps of F3o(X). The maxi-

mum deviation P_o occurs at the eleventh largest x, i.e.,

at u(11_, and so P_o = .22.

Our calculations on the distribution of P_o show that

deviations this large or larger occur with probability .72.

Thus, the agreement is excellent. The ordinary two-sided

Kolmogorov-Smirnov test was also applied, and gave very

good agreement too. Thus, the Gumbel theory holds for
this data.
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Fig. 2. The goodness-of-fit test
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Another type of test was performed on the data of

Table 1 to check the internal consistency of the Gumbel

method. If the theory is to hold, exceedance probability

estimates from a short run of data should yield estimates

related to, but not as good as, the estimates obtained

with further data. The following experiment was per-
formed. The 30 extremes of Table 1 were divided into

two groups of 15 each at random. One of the groups was

chosen, and the maximum-likelihood Gumbel distribution

was fitted on extreme-value probability paper for these

15 values. On the same paper, the line for all 30 points

was drawn for comparison (see Fig. 3).

Note how close the two lines are--well within an error

explainable by random deviations in sampling. The

maximum-likelihood exceedance probability estimated

from all 30 extremes was .024; the set of 15 gives .020.

Thus, the theory is internally consistent within the data.

The goodness-of-fit test, coupled with this internal con-

sistency test, justifies the use of Gumbel's extreme-value

theory in estimating error probabilities. The large savings

in testing time demonstrated in Part IV are therefore real.
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Fig. 3. Consistency in two different sample sizes
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